
Improving Standard C++ for the Physics Community

M. Paterno∗, W. E. Brown† , FNAL, Batavia, IL 60510, USA

Abstract

As Fermilab’s representatives to the C++ standardization
effort, we have been promoting directions of special inter-
est to the physics community. We here report on selected
recent developments toward the next revision, informally
denotedC++0x , of the C++ Standard.

INTRODUCTION

Standard C++ [1, 2] has become thelingua francaof
high energy physics (HEP) computing. Among the many
reasons for this are the language’s great expressive power,
its high computational efficiency, and its support for multi-
ple programming paradigms. In addition, high-quality C++
compilers, including free compilers, are available in nearly
all environments.

Historically, the HEP community, and the scientific com-
munity in general, has had little involvement with the C++
standardization process. The authors believed this situation
could be improved, and in 2000, with encouragement from
C++ originator Bjarne Stroustrup, obtained support from
the Fermilab Computing Division to participate in the C++
standardization process.

C++ Standards Bodies and Their Work

There are actuallymultiple C++ standards commit-
tees. The international committee (designated ISO JTC1-
SC22/WG21) is one; its members are national standards
bodies.1 Fermilab is a voting member of the US national
committee, ANSI NCITS/J16. WG21 and J16 conduct co-
located meetings on a regular basis, and share a common
web site [3]. While maintaining independent formal struc-
tures (such as voting procedures), the two bodies’ technical
experts nonetheless work together sufficiently closely that
they typically refer to the joint body as simplythe Commit-
tee, only rarely needing to distinguish among the organiza-
tions. We will continue their usage in this paper.

ISO published the first C++ standard [1] in 1998. For
two years thereafter the Committee enforced what Strous-
trup referred to as “a period of calm to enhance the sta-
bility of the language.” The Committee used this time to
identify, evaluate, and consolidate numerous minor editor-
ial adjustments and technical clarifications to the language

∗paterno@fnal.gov
†wb@fnal.gov
1As of this writing, there are fifteen national bodies with voting rights

in ISO JTC1-SC22/WG21.

of the original standard. The resulting updated C++ stan-
dard, known asC++03 , was published by ISO in 2003 [2]
and is also available as [4].

In parallel with the ISO publication cycle, the Commit-
tee began soliciting and evaluating proposals for extensions
to the C++ language and to its library. A Technical Report
on the standard library is likely to be voted out of commit-
tee in October 2004. To date, the Committee continues to
solicit and evaluate proposals.

Goals and Guidelines

In order to manage the future development of a project, it
is necessary to have a vision of the intended future. Loosely
stating such a vision for C++, the Committee intends:

• to minimize incompatibilities with C++03 and with
C99 [5],

• to keep to thezero-overheadprinciple,

• to maintain or increase type safety, and

• to minimize implementation-definedand undefined
behaviors.

Minimizing incompatibilities with C++03 preserves
users’ investment in existing C++ code. Minimizing incom-
patibilities with C99 provides similar benefit to user com-
munities that program in mixed-language environments.

The zero-overhead principle, “What you don’t use, you
don’t pay for” [6, p. 121], is near the core of the design of
C++. Adherence to this principle is responsible for much of
the run-time performance that C++ affords.

Type safety is another core tenet of C++. The benefits
of strong type checking have been well-known for several
decades. One primary benefit afforded by the C++ type
system is early (compile-time) error detection; another is
users’ ability to devise new types that are then treated on an
equal footing with the types pre-defined by the standard.

Both implementation-defined and undefined behaviors
make it more difficult to write portable code. It seems clear
that minimizing barriers to portability benefits all users.

With this set of guidelines in mind, the Committee is
actively evaluating a significant number of proposals for
improvements to C++.

A SAMPLING OF PROPOSALS

The standardization process proceeds by considering
specific proposals for changes in the standard. Indeed, no



progress can be made on an issue unless a specific written
proposal is brought forth. In this section, we present a sum-
mary of some of the proposals that seem most relevant to
the HEP community.

Enhanced Function-Declarations

Run-time performance has been of historic importance
to our community. To improve the code they produce,
compilers routinely analyze the flow of execution. Cur-
rent compilers are typically limited to consider only the
flow within a translation unit.2 We have brought forth a
proposal [7] that would enable compilers to perform com-
parable analysis between translation units, and to produce
improved code.

Consider, in the following code snippet, that the function
f were implemented in a separate translation unit:

void f(double x);

double z(double x, double y) {
return f(x) + f(y);

}

Unless the compiler is able to perform whole-program
analysis (difficult at best and impossible in some cases),
it will be unable to perform potentially important call site
optimizations.

One example of such an optimization arises in the con-
text of multithreaded environments. In such an environ-
ment, it may be possible to schedule simultaneous evalu-
ation off(x) andf(y). When the definition3 of f is not
available inz’s translation unit, most compilers will nec-
essarily be conservative and, in the interest of safety, forgo
this opportunity for improved code generation.

Another example of such an optimization is a form of
code factorization often known ashoisting. Consider the
example:

int f( int );

int h( int x ) {
int i, result = 0;
while( cin >> i )

result += i * f(x);
return result;

}

Whenf is expensive to evaluate, it may be reasonable for
a compiler to produce code equivalent to:

int f( int );

int h( int x ) {
int i, result = 0;

2A translation unitis a source file, augmented by any additional source
code that it may directly or indirectly#include.

3A function’sdefinitionincludes the entire implementation of the func-
tion.

bool __first_time = true;
int __cached_value;
while( cin >> i ) {

if( __first_time ) {
__cached_value = f(x);
__first_time = false;

}
result += i * __cached_value;

}
return result;

}

Again, however, a compiler must be conservative when it
can not see the definition off, because repeated calls to
f(x) may, in general, yield distinct results.

However, the author of a function likef often has the
knowledge the compiler lacks—for example, that function
f is stateless and is free of side effects, and so is safe for
concurrent evaluations, for loop hoisting, and/or for similar
optimizations. Currently, the language provides no mech-
anism for the programmer to express this knowledge in a
form useful to a compiler.

Our proposal introduces two new qualifiers to address
this lack:

1. It allows the programmer to declare a functionpure,
asserting that the function is stateless and commits no
side effects.

2. It also allows a programmer to declare, via the qual-
ifier nothrow, that a function will not throw any ex-
ception, nor otherwise interfere with normal return.

Furthermore, the proposal requires the compiler to verify
these declared features when compiling the implementation
of any function so declared. Finally, it allows the compiler
to make use of these features to produce improved code at
each function call site.

Random-Number4 Toolkit

The generation of high-quality sequences of random
numbers is important in many fields, not least in physics.
The existing C++ random number generation facility is lim-
ited to two functions:rand andsrand. These functions are
grossly inadequate for serious use:

• The results are not portable between implementations
because the algorithm used for generation is not spec-
ified.

• Many implementations exhibit poor “randomness”,
because conforming implementations can have as
short a period as216.

• Only one distribution is provided: uniformly-
distributed random integers.

4Recognizing that what are conventionally calledrandom numbers
should really be calledpseudo-randomnumbers, we shall use the con-
ventional nomenclature.



A proposal [8] before the Committee introduces a far more
substantial random number facility.5

The proposed random number library provides an exten-
sible toolkit consisting ofenginesanddistributionsfor ran-
dom number generators. An engine may be thought of as
a “source of randomness”; each produces a sequence of
uniformly-distributed random integers. A distribution cre-
ates, from the output of an engine, a stream of random vari-
ates with prescribed properties.

The proposal includes a handful of widely-used and
high-quality random number engines, as well as a signif-
icant number of the most widely-used random number dis-
tributions. Further, its modular design makes it easy for
users to add their own engines and (perhaps more impor-
tantly) their own distributions. Once added, such new en-
gines and distributions will be on an equal footing with
those already provided by the library as proposed.

The engines included in the proposal are some of the
most widely trusted in the field:

• linear congruential,

• Mersenne twister, and

• subtract-with-carry (also known asranlux).

Engines can also be modified or combined, using either the
discard blockor thexor combinealgorithms. The output
of any engine or engine combination can be used as input
to any of the distributions. Furthermore, the output of each
engine is guaranteed to be reproducible and portable across
implementations.

The proposed distributions are also some of the most im-
portant in the field:

• integer uniform, floating-point uniform;

• Bernoulli, binomial, geometric, negative binomial;

• Poisson, exponential, gamma, Weibull, extreme value;

• normal, lognormal,χ2, Breit-Wigner, FisherF , Stu-
dentt; and

• histogram sampling, cumulative distribution function
sampling.

These distributions’ outputs are guaranteed to be repro-
ducible on a given implementation.

Mathematical Special Functions

C++ support for higher mathematics is largely limited to
a small handful of transcendental functions. Recognizing,
in part, that this part of the standard library has had almost

5Fermilab hosted this proposal’s author for a week in October 2002.
During that time, we were able to communicate our community’s needs
such that critical elements of the proposal’s design were made consistent
with ourdesiderata.

no attention for quite some time, our proposal [9] to sup-
port mathematical special functions (the first significant en-
hancement to<math.h> in circa 30 years) is under active
Committee consideration.

As proposed, the special functions library contains many
of the most commonly-used functions of mathematical
physics:

• Bessel and Neumann functions (cylindrical and spher-
ical, 1st and2nd kinds),

• Legendre and associated Legendre polynomials,

• Spherical harmonics,

• Hermite polynomials,

• Laguerre and associated Laguerre polynomials,

• Gamma function,

• Complete and incomplete elliptic integrals (1st, 2nd

and3rd kinds),

• Euler beta function,

• Exponential integral,

• Riemann zeta function,

• Error and complementary error function, and

• Hypergeometric and confluent hypergeometric func-
tions.

Standardization brings with it the benefits of quality and
reliability, given professional attention to important details
sometimes overlooked by application programmers who
are focused on their specific problems. Such details in-
clude:

• performance (both inspeedand inspace),

• correct treatment of corner cases that may need special
handling, and

• consistent and appropriate error-reporting and -
handling.

Additional benefits include increased portability and re-
use. Most importantly, standardization will let our commu-
nity focus on physics problems rather than on issues related
to infrastructure or platform dependency.

The design of the special functions library follows C++
style: special functions arefunctions, as other designs
would tend to violate the zero-overhead principle, and/or
to be less easily extensible by users who wish to introduce
new functions—or new functionality—on the same footing
as that provided in the standard.

Slavish adherence to class-based design would suggest
an alternative approach, in which each special function
would be implemented via a class that contained only
static member functions: one to evaluate the function,



one or more to evaluate the function’s derivative(s), one
or more to evaluate the zeroes of the function, and so on.
Such a design uses a class solely as a namespace, but with-
out permitting the extensibility that free functions in a true
namespace would afford. Since classes are closed to ex-
tension, users can not insert new functionality—and clearly
no library can anticipate all future needs.

Since C++ is a multi-paradigm language, it does not force
us to adhere to any one methodology—it allows us the free-
dom to choose that methodology which best suits the prob-
lem domain. As a bonus, our chosen function-oriented de-
sign is compatible with the C programming language6, and
thus is immediately also compatible with most other pro-
gramming languages.

Shared-ownership Smart Pointers

A smart pointer, informally, is an object whose principal
responsibility is the management of a memory resource.
Today’s C++ standard library supplies only one form of
smart pointer,std::auto_ptr, which has single-owner
semantics. However, it has been recognized for some time
that a smart pointer withshared-ownershipsemantics is a
valuable component.

Unfortunately, no such shared-ownership pointer type is
uniformly available today. Since such a capability is of-
ten needed, numerous unique variations have been indepen-
dently invented and re-invented, a situation akin to the days
before the standardization ofstd::string. Experts such
as Herb Sutter note that implementation of such classes is
“exceedingly difficult,” especially in the presence of excep-
tions, so much time is wasted in re-inventing (and debug-
ging) the wheel.

Difficulty of implementation is not the only drawback to
thestatus quo: different libraries can not easily communi-
cate when each has its own smart pointer implementation.
Since such smart pointers naturally appear in well-designed
library interfaces, their omission from the standard has of-
ten resulted in contorted designs, in memory leaks, and
in other programming artifacts we can describe as “im-
pedance mismatches” between libraries. For all these rea-
sons, and based on years of experience with the very pop-
ular shared_ptr available from the Boost organization
[10]. the Committee is considering a proposal [11] to pro-
vide a shared-ownership smart pointer.

Move Semantics

The traditional notion ofcopyinga value involves du-
plicating its bit pattern. Known more precisely asshallow
copying, this straightforward process is typically applica-
ble to simple data structures only. In contrast,deepcopy-
ing is more often applicable to complex data structures, as
it involves recursive copies of contained sub-objects held
by pointers, Although deep copying can be an expensive

6Indeed, the C standards committees have undertaken incorporation of
these same functions.

operation, neither deep nor shallow copy operations impact
the original value being copied,

In contrast, let us definemovingas the transfer of the
value of an object from a source to a target, with no re-
gard for the value of the source after the move. Moving is
typically applicable when the source object:

• will be destroyed shortly after the copy, or

• will get a new value shortly after the copy.

In such cases, moving can be safely used in place of copy-
ing, and often at significantly lower cost.

Recognizing that the application of move semantics
can lead to considerable performance improvement7 in
common situations, the Committee is considering a pro-
posal [12] to addmove semanticsto the language, thus al-
lowing class authors (and compilers) the ability to choose
between moving or copying, depending on the context and
its economics.

OTHER DEVELOPMENTS

This paper has concentrated on those proposals to the
C++ standards committee that seem of most obvious inter-
est to the physics community. In this section, we briefly
mention a few of the other issues under consideration.
While some of these items are of lessobviousimportance to
the physics community, most are nonetheless important—
in many cases because they facilitate implementation of su-
perior libraries.

Decimal Arithmetic

Historically, computer arithmetic has been largely
based on binary representations. However, a recently-
promulgated draft ISO standard (IEEE 754R) promotes the
cause ofdecimal arithmetic. This standard was primar-
ily motivated by financial applications, which often must
follow strict legal guidelines for the rounding of monetary
values. However, such a development may also be of sig-
nificant interest to the scientific community.

Vendors have already committed to new hardware in
support of decimal arithmetic. There is a long-term view
that even suggests that binary arithmetic may ultimately
stagnate and fossilize, and that decimal arithmetic may
come to dominate numeric types. Accordingly, the Com-
mittee is exploring language and library support for deci-
mal arithmetic. This is expected to be a difficult task, as
many thorny problems need to be addressed.

Standard Library

The following is a list of selected additional library-
oriented proposals under consideration for inclusion in the
next C++ standard. Experimental reference implementa-
tions for many of these and other proposed library com-
ponents are freely available from the Boost web site [10].

7According to Howard Hinnant, one experimental implementation has
seen (in realistic cases) a 10- to 20-fold speed increase.



Unordered associative containers— a proposal to aug-
ment the generic containers library with hashed maps
and sets.

Regular expressions— a proposal to provide a toolkit for
pattern-matching in text strings, incorporating a num-
ber of regular expression engines, with special atten-
tion to issues of internationalization.

Enhanced function-binders, member-pointer adaptors
— two proposals to provide more flexible and uniform
mechanisms in support of functional programming8,
to realize more of the benefits of generic program-
ming.

Polymorphic function-object wrappers — a proposal to
provide a generalized function pointer (sometimes
termed acallback) to unify the related but disparate
concepts underlying function pointers, member func-
tion pointers, and function objects (functors).

Tuple types — a proposal to generalize the standardpair
template, in order to support fixed-size collections (tu-
ples) of size greater than two.

Type traits, function-result-type traits — two proposals
to facilitate compile-time improvement (via template
metaprogramming) of generic algorithms according to
the characteristics of the type(s) with which they are
instantiated.

Reference wrappers— a proposal to make reference se-
mantics more generally usable; in one important ap-
plication, standard containers could hold values by
reference.

Core Language

The following is a list of selected additional core
language-oriented topics and proposals under considera-
tion for inclusion in the next C++ standard.

Dynamic libraries — an effort to standardize the con-
struction and use of dynamic (often known asshared)
libraries.

Compile-time reflection — an effort to introduce addi-
tional compile-time information, so as to make pos-
sible more powerful generic code; persistency mech-
anisms constitute a particularly important application
of such a feature.

Conceptsfor generic programming — a proposal to al-
low programmers to express the requirements that an
algorithm imposes upon its template parameters, and
to have the compiler verify that the corresponding
template arguments meet those requirements.

8Functional programmingsupports the creation and use of functions
that operate on, and return, other functions.

Static assertions— a proposal to introduce a compile-
time equivalent of the well-known run-timeassert
mechanism.

decltype and auto — a proposal to let the programmer
use, in new contexts, a compiler’s existing ability to
carry out type deduction.

Forwarding constructors — a proposal to reduce code
duplication by permitting a programmer to write some
of a class’s constructors by making use of other con-
structors of the same class.

Local classes as template parameters— a proposal to
extend the use of local (block-scoped) classes to make
better use of generic algorithms.

User-defined literals, generalized initializer-lists—
two proposals to allow users to express compile-time
values for user-defined types in a fashion analogous
to that currently available for built-in types.

Null-pointer constant — a proposal to allow program-
mers to express the distinction between the integer
zero and a null pointer.

Template aliases— a proposal to permit a template form
of typedef.

CONCLUSION

Standard components benefit us all. They require less
in-house development and maintenance, they enhance our
efforts to share code, and they allow us to focus on physics,
rather than on infrastructure.

C++ continues to be of significant interest to the physics
community because of its expressiveness, its performance,
and our community’s significant experience in its use. C++
is now being enhanced in directions of substantive interest
to our community, and Fermilab has been actively nudging
it in these directions.

We at Fermilab hope to continue supporting the physics
community in the international C++ standards effort. We
welcome and encourage support from others in the com-
munity.

ACKNOWLEDGMENTS

The authors would like to thank the Fermilab Comput-
ing Division for supporting their participation in the C++
standardization effort.

REFERENCES

[1] International Standards Organization: ISO/IEC 14882:1998
Programming Languages – C++.

[2] International Standards Organization: ISO/IEC 14882:2003
Programming Languages – C++.

[3] http://www.open-std.org/jtc1/sc22/wg21.



[4] British Standards Institute:The C++ Standard incorporat-
ing Technical Corrigendum 1. John Wiley and Sons, Ltd.,
2003. ISBN 0-470-84674-7.

[5] International Standards Organization: ISO/IEC 9899:1999
Programming Languages – C.

[6] Bjarne Stroustrup: The Design and Evolution of C++.
Addison-Wesley, 1994. ISBN 0-201-54330-3.

[7] Walter E. Brown and Marc F. Paterno:Toward Improved
Optimization Opportunities in C++0x. JTC1-SC22/WG21
paper N1664; same as ANSI NCITS/J16 paper 04-0104.
July 16, 2004.

[8] Jens Maurer: A Proposal to Add an Extensible Random
Number Facility to the Standard Library (Revision 2). JTC1-
SC22/WG21 paper N1452; same as ANSI NCITS/J16 paper
03-0035. April 10, 2003.

[9] Walter E. Brown:A Proposal to Add Mathematical Special
Functions to the C++ Standard Library (version 3). JTC1-
SC22/WG21 paper N1542; same as ANSI NCITS/J16 paper
03-0125. October 28, 2003.

[10] http://www.boost.org

[11] Peter Dimov, Beman Dawes, and Greg Colvin:A Proposal
to Add General Purpose Smart Pointers to the Library Tech-
nical Report (Revision 1). JTC1-SC22/WG21 paper N1450;
same as ANSI NCITS/J16 paper 03-0033. March 27, 2003.

[12] Howard E. Hinnant, Peter Dimov, and Dave Abrahams:
A Proposal to Add Move Semantics Support to the C++
Language. JTC1-SC22/WG21 paper N1377; same as ANSI
NCITS/J16 paper 02-0035. September 10, 2002.


	Introduction
	C++ Standards Bodies and Their Work
	Goals and Guidelines

	A Sampling of Proposals
	Enhanced Function-Declarations
	Random-Number Recognizing that what are conventionally called random numbers should really be called pseudo-random numbers, we shall use the conventional nomenclature.  Toolkit
	Mathematical Special Functions
	Shared-ownership Smart Pointers
	Move Semantics

	Other Developments
	Decimal Arithmetic
	Standard Library
	Core Language

	Conclusion
	Acknowledgments
	REFERENCES

